🐐 Jelaskan Bagaimana Daya Listrik Dalam Kawat Hambatan Berubah Menjadi Panas

PengertianHambatan Listrik (Resistansi Listrik) - Resistansi (Resistance) atau lebih tepatnya disebut dengan Resistansi Listrik (Electrical Resistance) adalah kemampuan suatu bahan benda untuk menghambat atau mencegah aliran arus listrik. Seperti yang kita ketahui bahwa arus listrik adalah banyaknya muatan listrik yang mengalir dalam suatu rangkaian listrik dalam tiap satuan waktu yang dikarenakan oleh adanya pergerakan elektron-elektron pada konduktor. Sifat- sifat bahan konduktor adalah daya hantar listrik, koefisien temperature hambatan, daya hantar panas, daya tegangan tarik, dan elektro-motoris termo. Kita katakana bahwa orbital s telah berubah menjadi pita Gambar 2.1 Energi pada H2 sebagai fungsi jarak atom maka konduktivitas listrik kawat tembaga sekarang ini bisa mencapai Teganganbolak-balik bergerak (mempercepat) muatan mundur dan maju. Seorang pengamat yang melihat satu titik di sepanjang kawat akan 'melihat' ini sebagai arus bolak-balik. Pada ujung antena, medan listrik dan medan magnet (bukan arus) tidak memiliki tempat lain sehingga dipantulkan kembali (seperti halnya cahaya yang dipantulkan dari cermin). pselalu berharga positif sehingga daya akan selalu hilang pada setiap saat, berubah menjadi panas pada hambatan. Daya tersebut selalu berubah setiap saat, berharga nol saat sin wt = 0, dan maksimum sebesar V2/ R saat sin w t = 1. Untuk menentukan efek pemanasan dari isyarat di atas, persamaan daya di atas dapat dituliskan sebagai Nah hambatan tidak konstan, kurang lebih seperti itu. Rumusnya kayak gini: Ya, hambatan itu ada kaitannya dengan suhu. Seperti yang tadi kita bahas, suhu laptop yang panas, seringkali membuat dia nge-hang dan tidak bekerja. Itu artinya, hambatan si laptop bertambah karena pengaruh panas. Nah, itu tadi pembahasan kita tentang hambatan listrik. Jelaskanbagaimana ginjal mengeluarkan zat-zat sampah dan mempertahankan keseimbangan garam-garam tubuh! 2. Pesan merupakan muatan listrik yang bergerak sepanjang akson seperti halnya listrik mengalir di dalam kawat. besar iris dan pupil juga berubah. Pupil menjadi lebih besar dalam cahaya remangremang dan lebih kecil dalam cahaya terang. Adayang lambat ada yang lebih cepat dalam mengubah energi listrik menjadi energi cahaya. Kemampuan atau kecepatannya dalam mengubah energi listrik menjadi energi cahaya itulah yang kemudian disebut Daya Listrik lampu itu.
Faktor yang mempengaruhi Daya Listrik.
Sebuah lampu listik selama 1 menit telah menggunakan energi listrik. Dalamsebuah kawat hambatan yang dialiri listrik terjadi pemanasan akibat energi listrik menjadi energi panas. Karena daya yang ditimbulkan oleh arus DC (I) melalui tegangan (V) sama dengan I dikali V, maka dalam waktu t, energi panas yang dihasilkan adalah E = V.I.t (2.4) Sedangkanterhadap hambatan adalah berbanding terbalik. Ini berarti bahwa semakin besar voltase, semakin besar pula arus yang akan mengalir dalam rangkaian. Tetapi dengan semakin besarnya hambatan, maka arus yang mengalir akan tertekan proporsional terhadap nilai hambatan. Daya Listrik P = V x I karena V = I x R, maka P = ( I x R ) x I P = I2 x R Alatyang mengubah energi listrik menjadi energi gerak pada umumnya menggunakan motor listrik. Pada motor listrik, arus listrik mengalir melalui kumparan untuk menimbulkan medan magnet, sehingga as motor berputa. Putaran as motor inilah yang dimanfaatkan untuk menggerakan kipas angin, bor listrik, belender, mobil - mobilan, dan alat lain. Aruslistrik dapat dibedakan menjadi dua dilihat dari arah alirannya, yaitu: Arus Searah (Direct Current atau DC), pada jenis arus searah ini arus listrik mengalir dari titik berpotensial tinggi menuju titik berpotensial rendah. Arus Bolak Balik (Alternating Current atau AC). Jenis arus ini mengalir secara berubah ubah mengikuti garis garis waktu. KoefisienSuhu terhadap Resistansi (hambatan-tahanan-resistivitas) Dalam teknik listrik atau elektronik, ketika aliran arus supply melalui kawat maka akan panas karena resistansi atau hambatan kawat. Dalam kondisi sempurna, resistansi harus '0' namun itu tidak terjadi. Ketika kawat menjadi panas, maka resistansi kawat berubah sesuai dengan suhu. HwKE9F. Energi dan daya listrik. Listrik merupakan sumber energi yang sangat diperlukan oleh manusia untuk kehidupan sehari-hari, terutama pada era modern ini. Dimana, banyak peralatan listrik yang selalu kita gunakan untuk memenuhi kebutuhan hidup, katakan saja lampu, televisi, mesin cuci, maupun kulkas. Dalam prakteknya, penggunaan energi listrik ini tidak bisa terlepas dari adanya daya listrik dari berbagai peralatan listrik yang kita gunakan. Misalnya, jika peralatan listrik digunakan bersamaan dan memiliki daya listrik yang besar, maka membutuhkan energi listrik yang besar pula. Nah, pada materi kali ini kita akan membahas mengenai hubungan antara energi dan daya listrik beserta cara perhitungannya. Kita simak yuk penjelasannya! Energi listrik Energi listrik merupakan energi yang disebabkan oleh aliran muatan listrk dalam suatu rangkaian listrik tertutup. Peralatan yang kita gunakan seperti hairdryer, solder, pemanggang roti dan bola lampu jika dialiri listrik akan mengubah energi listrik menjadi energi bentuk lain seperti energi panas atau cahaya pada lampu. Baca juga Sumber Arus Listrik, Dari Mana Saja? Pada setiap alat listrik mempunyai hambatan tersendiri dan arus yang melewatinya merupakan elektron yang bergerak lalu akan bertumbukan dengan atom pada hambatan kawat, maka hambatan kawat pada alat tersebut bisa menjadi panas. Energi listrik dapat dinyatakan dalam persamaan berikut ini E = Vlt Keterangan E= energi listrik joule V = poensi listrik volt I = kuat arus A_ t = waktu s Contoh soal Sebuah peralatan elektronik dipasang pada tegangan sebesar 15 volt dengan arus yang mengalir sebesar 0,45 A. Berapakah besar energi listrik yang dibutuhkan dalam jangka waktu 2 menit? Jawaban V = 15 V l = 0,45 A t = 2 menit = 120 detik E = V x l x t E = 15 x 0,45 x 120 = 810 joule Daya Listrik Daya dapat diartikan sebagai banyaknya energi yang dibutuhkan tiap satuan waktu. Energi yang diubah oleh peralatan listrik bila muatan q bergerak melintasi beda potensial sebesar V adalah qV. Daya P merupakan kecepatan perubahan energi atau energi persatuan waktu dan dapat dirumuskan sebagai berikut Keterangan P = daya listrik watt E = energi listrik joule t = waktu s hubungan antara joule dan kWh sebagai berikut 1 kWh = J = 3,6 . 106 J Contoh soal Sebuah ruangan memiliki lampu pijar dengan tegangan sebesar 48 volt dengan hambatan sebesar 4 Ohm. Maka berapakah daya listrik pada lampu pijar tersebut ? Jawaban V = 48 Volt R = 4 Ohm P = V2/R = 482/4 = 576 watt Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Related TopicsDaya ListrikEnergi dan Daya ListrikIPA TerpaduKelas 9 You May Also Like Bayangkan kamu sedang naik perahu di sebuah sungai. Selama perjalanan, ada masanya kamu mendapati aliran air yang tenang, lembut, dan kamu berlayar tanpa hambatan berarti. Tetapi, ada juga masanya kamu akan menemukan bebatuan serta ranting pohon yang menahan aliran air, sehingga membuat perahumu berjalan lebih pelan. Nah, hal ini sebenarnya berkaitan dengan hambatan listrik dan arus listrik. Oke, oke, sebelum sampai ke sana. Kita bahas sedikit tentang arus listrik ini. Pada dasarnya, arus listrik adalah arus elektron yang diarahkan berlawanan. Kalau kamu perhatikan pada baterai, misalnya. Kamu pasti memasang kutub positif + ke arah negatif - kan. Ini lah yang dimaksud dengan berlawanan. Sebelum abad ke-19, para peneliti sebenarnya sudah mampu menghasilkan arus statis dengan menggosokkan beberapa material. Tapi, kemampuan mereka baru sebatas di situ saja. Paling mentok, cuman munculin percikan listrik. Percikan listrik sumber NightHawkInLight via giphy Mereka belum bisa, tuh, membuat tegangan listrik konstan yang bisa menghasilkan aliran listrik yang stabil. Sampai kemudian, Georg Simon Ohm, seorang fisikawan asal Jerman, berhasil menemukan hubungan antara hambatan listrik dengan kuat arus dan tegangan. Dia pun mengeluarkan hukum Ohm yang menghasilkan rumus I = V/R Seperti arus di sungai yang penuh ranting, bebatuan, dan hambatan tadi, semakin besar hambatannya , maka akan semakin kecil kuat arusnya A. Sekarang, lanjutkan perjalanan perahumu. Kamu terus mengayuh dan, sesampainya di ujung sungai, kamu melihat dua bendungan. Pintu bendungan yang satu terbuka lebar, sementara yang lainnya hanya terbuka sedikit. Bendungan yang airnya mengecil karena pintunya hanya terbuka sedikit sumber ruangguru Bendungan dengan pintu terbuka lebar sumbernya besar pasti akan mengeluarkan banyak air. Di sisi lain, bendungan dengan pintu yang terbuka sedikit juga akan mengeluarkan sedikit air. Baca juga Penjelasan Hukum I dan II Kirchoff Inilah kaitan antara beda potensial/tegangan listrik v dengan arus listriknya A. Semakin besar sumber tegangannya v, semakin besar kuat arus listriknya A. Semakin kecil sumber tegangannya, semakin kecil juga kuat arus listriknya. Berbicara mengenai arus listrik, pasti berhubungan dengan “media” pembawanya, dong. Contohnya, kabel yang terbuat dari tembaga dan kawat yang terbuat dari besi. Kedua benda ini, pasti mempunyai hambat jenis yang berbeda. Jika kembali pada konsep “perahu di sungai penuh batu dan ranting”, tentu perahu kita akan lebih sulit berlayar. Sebaliknya, dengan sedikitnya hambat jenis sungai mulus, hanya aliran air lancar akan mengurangi nilai hambatan listriknya. Perahu yang terhambat karena berbagai hambat jenis sumber crash course via giphy Dari situ kita bisa tahu bahwa semakin besar hambat jenisnya m, semakin besar juga hambatannya . Sekarang lanjut ke luas penampang ya. Bayangkan perahu kamu sempat melewati dua jenis sungai sungai yang panjang dan pendek. Keduanya sama-sama tidak ada hambatan. Hanya aliran air tenang dan kosong. Pasti dong semakin panjang sungainya, lama-lama kita akan bete. Bosan. Merasa “terhambat” karena kok kayaknya nggak sampe-sampe. Bandingkan dengan sungai yang pendek. Baru sebentar, eh udah sampai tujuan. Oleh karena itu, semakin panjang semakin panjang suatu kawat L, hambatan listriknya pun akan semakin besar juga. Yuk lanjutkan perjalananmu. Sekarang, semakin lama kamu berlayar, kamu mulai menyadari bahwa… lebar sungai tersebut semakin besar. Apa perasaan kamu? Takut? Atau malah lega? Pada umumnya, seseorang merasa lebih “senang” dan lega mendapati hal tersebut. Kita justru akan merasa lebih “terhambat” dengan kondisi sungai yang sempit. Apalagi kalau di sungai tersebut banyak perahu lain yang ikut berlayar. Kamu akan jadi lebih susah bergerak, dan lama sampai ke tujuan. Lebar sungai membesar, hambatan mengecil sumber Itu artinya, semakin besar luas penampangnya A, maka hambatannya akan semakin kecil. Gimana? Akhirnya selesai juga perjalananmu. Ternyata mudah juga ya mempelajari hambatan listrik dan hukum ohm lewat analogi perahu ini. Masalahnya, Ohm hanya mengungkapkan hambatan yang bersifat konstan. Lalu bagaimana untuk hambatan yang sifatnya tidak konstan? Coba kamu ingat-ingat pengalaman pahit kamu dengna laptop yang kamu gunakan. Mungkin banyak di antara kita yang terlalu lama menggunakan laptop, lalu tiba-tiba laptopnya ngehang karena panas. Nah, hambatan tidak konstan, kurang lebih seperti itu. Rumusnya kayak gini Ya, hambatan itu ada kaitannya dengan suhu. Seperti yang tadi kita bahas, suhu laptop yang panas, seringkali membuat dia nge-hang dan tidak bekerja. Itu artinya, hambatan si laptop bertambah karena pengaruh panas. Nah, itu tadi pembahasan kita tentang hambatan listrik. Ternyata, belajar fisika jadi mudah apabila kita bisa mengandaikan dengan hal-hal yang ada di sekitar kita ya. Kalau kamu ingin memelajari materi pelajaran seperti ini dalam bentuk video animasi menarik, lengkap dengan infografik dan latihan soal, tonton aja di ruangbelajar! Rumus Daya Listrik – Pengertian, Hambatan, Tetangan Dan Contoh – – Daya Listrik atau dalam bahasa Inggris disebut dengan Electrical Power adalah jumlah energi yang diserap atau dihasilkan dalam sebuah sirkuit/rangkaian. Sumber Energi seperti Tegangan listrik akan menghasilkan daya listrik sedangkan beban yang terhubung dengannya akan menyerap daya listrik tersebut. Dengan kata lain, Daya listrik adalah tingkat konsumsi energi dalam sebuah sirkuit atau rangkaian listrik. Kita mengambil contoh Lampu Pijar dan Heater Pemanas, Lampu pijar menyerap daya listrik yang diterimanya dan mengubahnya menjadi cahaya sedangkan Heater mengubah serapan daya listrik tersebut menjadi panas. Semakin tinggi nilai Watt-nya semakin tinggi pula daya listrik yang dikonsumsinya. Sedangkan berdasarkan konsep usaha, yang dimaksud dengan daya listrik adalah besarnya usaha dalam memindahkan muatan per satuan waktu atau lebih singkatnya adalah Jumlah Energi Listrik yang digunakan tiap detik. Berdasarkan definisi tersebut, perumusan daya listrik adalah seperti dibawah ini P = E / t Dimana P = Daya Listrik E = Energi dengan satuan Joule t = waktu dengan satuan detik Dalam rumus perhitungan, Daya Listrik biasanya dilambangkan dengan huruf “P” yang merupakan singkatan dari Power. Sedangkan Satuan Internasional SI Daya Listrik adalah Watt yang disingkat dengan W. Watt adalah sama dengan satu joule per detik Watt = Joule / detik Satuan turunan Watt yang sering dijumpai diantaranya adalah seperti dibawah ini 1 miliWatt = 0,001 Watt 1 kiloWatt = Watt 1 MegaWatt = Watt Baca Juga Listrik Statis Rumus Daya Listrik Rumus umum yang digunakan untuk menghitung Daya Listrik dalam sebuah Rangkaian Listrik adalah sebagai berikut P = V x I Atau P = I2R P = V2/R Dimana P = Daya Listrik dengan satuan Watt W V = Tegangan Listrik dengan Satuan Volt V I = Arus Listrik dengan satuan Ampere A R = Hambatan dengan satuan Ohm Contoh Kasus Perhitungan Daya Listrik Contoh Kasus I Sebuah Televisi LCD memerlukan Tegangan 220V dan Arus Listrik sebesar 1,2A untuk mengaktifkannya. Berapakah Daya Listrik yang dikonsumsinya ? Penyelesaiannya Diketahui V = 220V I = 1,2A P = ? Jawaban P = V x I P = 220V x 1,2A P = 264 Watt Jadi Televisi LCD tersebut akan mengkonsumsi daya listrik sebesar 264 Watt. Baca Juga Akibat Rotasi Bumi Contoh Kasus II Seperti yang terlihat pada rangkaian dibawah ini hitunglah Daya Listrik yang dikonsumsi oleh Lampu Pijar tersebut. Yang diketahui dalam rangkain dibawah ini hanya Tegangan dan Hambatan. Penyelesaiannya Diketahui V = 24V R = 3 P = ? Jawaban P = V2/R P = 242 / 3 P = 576 / 3 P = 192W Jadi daya listrik yang dikonsumsi adalah 192W. Persamaan Rumus Daya Listrik Dalam contoh kasus II, variabel yang diketahui hanya Tegangan V dan Hambatan R, jadi kita tidak dapat menggunakan Rumus dasar daya listrik yaitu P=VI, namun kita dapat menggunakan persamaan berdasarkan konsep Hukum Ohm untuk mempermudah perhitungannya. Hukum Ohm V = I x R Jadi, jika yang diketahui hanya Arus Listrik I dan Hambatan R saja. P = V x I P = I x R x I P = I2R –> dapat menggunakan rumus ini untuk mencari daya listrik Sedangkan penjabaran rumus jika diketahui hanya Tegangan V dan Hambatan R saja. P = V x I P = V x V / R P = V2 / R –> dapat menggunakan rumus ini untuk mencari daya listrik. Baca Juga Besaran Pokok dan Turunan Daya dalam Rangkaian Listrik Selain tegangan dan arus, ada besaran yang diperoleh akibat aktivitas elektron bebas dalam suatu rangkaian listrik, yaitu daya. Pertama-tama, harus diketahui apa pengertian daya sebelum menganalisisnya dalam rangkaian listrik. Daya adalah ukuran seberapa besar kerja yang dapat dilakukan dalam waktu yang diberikan. Definisi kerja umumnya adalah mengangkat sesuatu yang berat melawan gaya gravitasi. Semakin berat dan semakin tinggi benda yang diangkat, maka semakin besar kerja yang dilakukan. Dalam rangkaian listrik, daya merupakan fungsi dari tegangan dan arus. Hubungan daya secara sistematis dapat dirumuskan sebagai berikut Akan tetapi dalam masalah ini daya P sama dengan arus I dikali dengan tegangan E atau sebanding dengan IE. Ketika menggunakan formula ini, satuan besaran daya adalah watt, yang disingkat dengan huruf kapital “W”. Daya merupakan gabungan antara tegangan dan arus dalam rangkaian. Ingat bahwa tegangan adalah kerja tertentu atau energi potensial per satuan muatan, ketika arus adalah laju muatan listrik yang bergerak melalui konduktor. Tegangan analogi dengan kerja yang dilakukan dalam mengangkat beban melawan tarikan gravitasi. Arus analogi dengan kecepatan pada beban yang diangkat. Suatu rangkaian dengan tegangan tinggi dan arus yang rendah mungkin melepaskan jumlah daya yang sama sebagaimana rangkaian dengan tegangan rendah dan arus yang tinggi. Baik nilai tegangan maupun nilai arus menunjukkan besarnya daya dalam rangkaian listrik. Dalam suatu rangkaian terbuka, di mana terdapat tegangan antara terminal sumber dan arus sama dengan nol, maka tidak ada tenaga yang dilepaskan, tak masalah seberapa besar tegangan yang terukur. Karena P=IE dan I=0 dan tegangan dikalikan dengan nol hasilnya adalah nol, maka daya yang dilepaskan dalam rangkaian sama dengan nol. Dengan demikian, jika rangkaian dihubung singkat sehingga tahanan hubung singkat sama dengan nol seperti kawat superkonduktif, dari kondisi seperti ini maka tegangan bernilai nol, sehingga tidak ada daya yang akan dilepaskan. Jika diukur daya dalam satuan “daya kuda” atau satuan “watt”, maka ada hal yang sama dalam satuan tersebut, yaitu seberapa besar kerja yang dapat dilakukan dalam waktu tertentu. Dua satuan tersebut tidak sama secara angka, tetapi dapat dikonversikan antara satu dengan yang lain. Baca Juga Makalah Pemanasan Global Global Warming 1 Daya Kuda Horse Power =745,7 Watt Jika suatu mesin diesel atau mesin sepeda motor 100 daya kuda, maka dapat dinominalkan dengan mesin “74570 watt”. Perhitungan Daya Listrik Sebagaimana telah diketahui pada pembahasan sebelumnya formula untuk menentukan daya dalam rangkaian listrik adalah dengan mengalikan tegangan dalam “volt” arus dalam “amp” sehingga didapat satuan daya dalam “watt”. Contoh perhitungan daya dapat dilihat pada Gambar 1. Gambar 1 Sumber tegangan dan tahanan rangkaian diketahui Dalam rangkaian di atas, dapat diketahui bahwa sebuah baterai dengan tegangan 18 volt dan lampu dengan tahanan 3 . Dengan menggunakan hukum Ohm untuk menentukan arus, di dapat Setelah didapat arus, maka daya dapat ditentukan dengan mengalikannya dengan tegangan sehingga Jadi jawabannnya adalah lampu tersebut melepaskan daya 108 watt, sebagian besar dalam bentuk cahaya dan panas. Baca Juga 1 Kg Berapa Gram Kemudian dengan rangkaian yang sama tegangan baterai dinaikkan untuk melihat apa yang terjadi. Secara gamblang dapat diketahui bahwa arus dalam rangkaian akan meningkat sebagaimana tegangan meningkat dan tahanan lampu tetap sama. Demikian juga, daya akan meningkat juga Gambar 2 Sumber tegangan dinaikkan Sekarang, tegangan baterai adalah 36 volt sebagai ganti 18 volt pada Gambar 1. Lampu tersebut menyediakan tahanan listrik 3 Ohm agar elektron dapat mengalir, sehingga arus menjadi Hal ini karena jika I = E/R, dan nilai E ganda sedangkan R tetap sama dan nilai arus menjadi ganda pula. Nilai arus yang diperoleh adalah 12 Amp dan daya menjadi Perhatikan bahwa daya meningkat sebagaimana yang diperkirakan, tetapi meningkatnya lebih disebabkan oleh arus. Hal ini disebabkan daya merupakan fungsi dari tegangan dikalikan arus, dan baik arus maupun tegangan bernilai ganda dari nilai pada rangkaian sebelumnya, sehingga daya pun meningkat oleh faktor 2 x 2 atau 4. Ini dapat diperiksa dengan membagi 432 Watt dengan 108 Watt dan hasilnya adalah 4. Dengan menggunakan aljabar dapat memanipulasi Persamaan 1, walaupun tidak diketahui salah satu besaran baik itu arus, tegangan atau tahanan. Jika hanya diketahui tegangan E dan tahanan R Jika kita hanya mengetahui arus I dan tahanan R, maka Menurut catatan sejarah bahwa James Prescott Joule, bukan Georg Simon Ohm, yang pertama kali menemukan hubungan matematis antara pelepasan daya dan arus yang melalui tahanan. Penemuan ini diterbitkan dalam tahun 1841, diikuti dengan formulasi terakhir P=I2R, dan tepatnya dikenal dengan hukum Joule. Akan tetapi persamaan daya ini sangat umum jika dihubungkan dengan persamaan hukum Ohm yang berhubungan dengan tegangan, arus dan tahanan E=IR ; I=E/R dan R=E/I sehingga sering ditujukan kepada Ohm sebagai penghargaan. Artikel kali ini lebih saya tujukan kepada orang awam yang ingin mengenal dan mempelajari teknik listrik ataupun bagi mereka yang sudah berkecimpung di dalam teknik elektro untuk sekedar mengingat kembali teori-teori dasar listrik. Baca Juga Listrik Dinamis 1. Arus Listrik adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere. Arus listrik bergerak dari terminal positif + ke terminal negatif -, sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif - ke terminal positif+, arah arus listrik dianggap berlawanan dengan arah gerakan elektron. Gambar 1. Arah arus listrik dan arah gerakan elektron. “1 ampere arus adalah mengalirnya elektron sebanyak 624×10^16 6,24151 × 10^18 atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor” Formula arus listrik adalah I = Q/t ampere Dimana I = besarnya arus listrik yang mengalir, ampere Q = Besarnya muatan listrik, coulomb t = waktu, detik 2. Kuat Arus Listrik Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu. Definisi “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”. Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu Q = I x t I = Q/t t = Q/I Dimana Q = Banyaknya muatan listrik dalam satuan coulomb I = Kuat Arus dalam satuan Amper. t = waktu dalam satuan detik. “Kuat arus listrik biasa juga disebut dengan arus listrik” “muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb C”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik” Baca Juga Kromatografi Adalah 3. Rapat Arus Difinisi “rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”. Gambar 2. Kerapatan arus listrik. Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² 12A/4 mm², ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² 12A/1,5 mm². Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus KHA. Tabel 1. Kemampuan Hantar Arus KHA Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil. Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat J = I/A I = J x A A = I/J Dimana J = Rapat arus [ A/mm²] I = Kuat arus [ Amp] A = luas penampang kawat [ mm²] 4. Tahanan dan Daya Hantar Penghantar Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan. Tahanan didefinisikan sebagai berikut “1 satu Ohm adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C” Daya hantar didefinisikan sebagai berikut “Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”. Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus R = 1/G G = 1/R Dimana R = Tahanan/resistansi [ /ohm] G = Daya hantar arus /konduktivitas [Y/mho] Gambar 3. Resistansi Konduktor Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm. “Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ rho, maka tahanan penghantar tersebut adalah” R = ρ x l/q Dimana R = tahanan kawat [ /ohm] l = panjang kawat [meter/m] l ρ = tahanan jenis kawat [mm²/meter] q = penampang kawat [mm²] Faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada panjang penghantar. luas penampang konduktor. jenis konduktor . temperatur. “Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar” 5. Potensial atau Tegangan Potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt. “Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb” Formulasi beda potensial atau tegangan adalah V = W/Q [volt] Dimana V = beda potensial atau tegangan, dalam volt W = usaha, dalam newton-meter atau Nm atau joule Q = muatan listrik, dalam coulomb Rangkaian Listrik Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut 1. Adanya sumber tegangan 2. Adanya alat penghubung 3. Adanya beban Gambar 4. Rangkaian Listrik. Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup. Cara Pemasangan Alat Ukur Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil. “alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter” Hukum Ohm Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus I = V/R Hukum Kirchoff Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol I=0. Gambar 5. loop arus“ KIRChOFF “ Jadi I1 + -I2 + -I3 + I4 + -I5 = 0 I1 + I4 = I2 + I3 + I5 Teori Dasar Listrik Tahanan Dari Penghantar Listrik Semua bahan bagaimanapun murninya selalu mempunyai tahanan listrik, yang mana tahanan ini tergantung tahanan jenis ρ bahan itu sendiri. Tahanan tersebut tergantung dari bahan; berbanding lurus dengan panjang dan berbanding terbalik dengan penampang penghantar tersebut. Temperatur juga akan mempengaruhi besarnya tahanan. Baik atau buruknya tahanan suatu penghantar ditentukan oleh; Tahanan Jenis ρ = Rho ρ = adalah menunjukkan tahanan darin suatu penghantar panjang 1 meter, penampang 1 mm2 pada suhu 20 o C. Satuan dari nilai ini adalah ohm milimeter kwadrat permeter . A= 1mm2 pada 20 o C panjang l= 1 m Daya Hantar = Kappa א = adalah bilangan yang menunjukkan panjang dalam meter dari sebuah penghantar yang penampangnya 1 mm2 dan tahanannya 1 . Nilai daya hantar adalah kebalikan dari tahanan jenis, yaitu = Nilai daya hantar adalah bermacam-macam tergantung dari bahannya. Pada umumnya adalah kita menghitung dengan; Contoh Daya hantar tembaga adalah Hitung tahanan jenis tembaga ? Jawab = →ρ = = Catatan Makin tinggi tahanan jenis serta makin panjang penghantarnya dan makin kecil penampangnya adalah = makin tinggi tahanan dari penghantarnya. Tahanan jenis harganya 0,01786 atau Hantaran jenis harganya 56 atau kebalikan dari tahanan jenis dimana; R = Tahanan atau hambatan = Tahanan jenis = Daya hantar l = Panjang m A = Luas mm2 . Hambatan adalah gesekan atau rintangan yang diberikan suatu bahan terhadap suatu aliran arus. Hambatan itu antara lain ; lampu, kumparan, elemen panas, dsb. Ukuran semua jenis kawat telanjang biasanya diameternya Ф dalam mm. Ukuran penghantar jenis kawat berisolasi biasanya penampang dalam mm2. Demikian penjelasan artikel diatas tentang Rumus Daya Listrik – Pengertian, Hambatan, Tetangan Dan Contoh semoga dapat bermanfaat bagi pembaca setia

jelaskan bagaimana daya listrik dalam kawat hambatan berubah menjadi panas